skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kolstoe, Sonja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Predicting the edges of species distributions is fundamental for species conservation, ecosystem services, and management decisions. In North America, the location of the upstream limit of fish in forested streams receives special attention, because fish-bearing portions of streams have more protections during forest management activities than fishless portions. We present a novel model development and evaluation framework, wherein we compare 26 models to predict upper distribution limits of trout in streams. The models used machine learning, logistic regression, and a sophisticated nested spatial cross-validation routine to evaluate predictive performance while accounting for spatial autocorrelation. The model resulting in the best predictive performance, termed UPstream Regional LiDAR Model for Extent of Trout (UPRLIMET), is a two-stage model that uses a logistic regression algorithm calibrated to observations of Coastal Cutthroat Trout ( Oncorhynchus clarkii clarkii ) occurrence and variables representing hydro-topographic characteristics of the landscape. We predict trout presence along reaches throughout a stream network, and include a stopping rule to identify a discrete upper limit point above which all stream reaches are classified as fishless. Although there is no simple explanation for the upper distribution limit identified in UPRLIMET, four factors, including upstream channel length above the point of uppermost fish, drainage area, slope, and elevation, had highest importance. Across our study region of western Oregon, we found that more of the fish-bearing network is on private lands than on state, US Bureau of Land Mangement (BLM), or USDA Forest Service (USFS) lands, highlighting the importance of using spatially consistent maps across a region and working across land ownerships. Our research underscores the value of using occurrence data to develop simple, but powerful, prediction tools to capture complex ecological processes that contribute to distribution limits of species. 
    more » « less
  2. Abstract During the 21st century, human–environment interactions will increasingly expose both systems to risks, but also yield opportunities for improvement as we gain insight into these complex, coupled systems. Human–environment interactions operate over multiple spatial and temporal scales, requiring large data volumes of multi‐resolution information for analysis. Climate change, land‐use change, urbanization, and wildfires, for example, can affect regions differently depending on ecological and socioeconomic structures. The relative scarcity of data on both humans and natural systems at the relevant extent can be prohibitive when pursuing inquiries into these complex relationships. We explore the value of multitemporal, high‐density, and high‐resolution LiDAR, imaging spectroscopy, and digital camera data from the National Ecological Observatory Network’s Airborne Observation Platform (NEON AOP) for Socio‐Environmental Systems (SES) research. In addition to providing an overview of NEON AOP datasets and outlining specific applications for addressing SES questions, we highlight current challenges and provide recommendations for the SES research community to improve and expand its use of this platform for SES research. The coordinated, nationwide AOP remote sensing data, collected annually over the next 30 yr, offer exciting opportunities for cross‐site analyses and comparison, upscaling metrics derived from LiDAR and hyperspectral datasets across larger spatial extents, and addressing questions across diverse scales. Integrating AOP data with other SES datasets will allow researchers to investigate complex systems and provide urgently needed policy recommendations for socio‐environmental challenges. We urge the SES research community to further explore questions and theories in social and economic disciplines that might leverage NEON AOP data. 
    more » « less